
AFRL-SN-RS-TR-2001-146 Vol IV (of VI)
Final Technical Report
July 2001

KNOWLEDGE BASE APPLICATIONS TO
ADAPTIVE SPACE-TIME PROCESSING, VOLUME
IV: KNOWLEDGE-BASED TRACKING

ITT Systems

Technology Service Corporation

Charles Morgan and Lee Moyer

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20011109 058
AIR FORCE RESEARCH LABORATORY

SENSORS DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,

including foreign nations.

AFRL-SN-RS-TR-2001-146 Vol IV (of VI) has been reviewed and is approved

for publication.

APPROVED:

MICHAEL C. WICKS
Project Engineer

FOR THE DIRECTOR:

ROBERT G. POLCE, Chief
Rome Operations Office
Sensors Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no ^nger employed by
your organization, please notify AFRL/SNRT, 26 Electronic Pky, Rome, NY 13441-
4514. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific

document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing end reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

JULY 2001
3. REPORT TYPE AND DATES COVERED

 Final Aug 95 - Jul 99
4. TITLE AND SUBTITLE

KNOWLEDGE BASE APPLICATIONS TO ADAPTIVE SPACE-TIME
PROCESSING, VOLUME IV: KNOWLEDGE-BASED TRACKING

6. AUTHOR(S)

Charles Morgan and Lee Moyer

5. FUNDING NUMBERS

C - F30602-95-C-0041
PE- 62702F
PR- 4506
TA- 11
WU-2B

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Prime: ITT Systems Sub technology Service Corporation
775 Daedalian Drive 6515 Main Street
Rome New York 13441 Trumbull CT 06611

8. PERFORMING ORGANIZATION
REPORT NUMBER

TSC-CT109-22

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/SNRT
26 Electronic Pky
Rome New York 13441-4514

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-SN-RS-TR-2001 -146
VolIV(ofVI)

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Michael C. Wicks/SNRT/(315) 330-2556

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes a knowledge-based tracking capability that will support a space-time adaptive processing (STAP)
environment. The effort described in this report resulted in development of a multiple target tracker and the design and
testing of several knowledge-based rules.

Three types of tracking filters are described:

1. An uncoupled two-state alpha-beta filter with position and velocity component states,
2. An uncoupled three-state Kaiman filter with position, velocity, and acceleration component states, and
3. An extended four-state Kaiman filter with both x and y position and velocity component states.

The first two filters use a one-dimensional measurement vector containing the report position component. The extended
Kaiman filters uses a three-dimensional measurement vector containing x and y report position and "pseudo" Doppler, the
latter defined as range times range rate.

14. SUBJECT TERMS

Radar, Algorithms, Tracking, Knowledge Base Tracking
15. NUMBER OF PAGES

84
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS1D10R, Oct 94

Table of Contents

1.0 Introduction and Overview 1

2.0 Tracker Description 2

2.1 Basic Tracker 2

2.2 Knowledge Based Rules 4

2.2.1 Tracking Legend 5

2.2.2 Maneuver/Obstacle Rules 5

2.2.3 Shadow Rule 9

2.2.4 Discrete Rule 10

3.0 Software Description 11

Module Name: Tracker_GUI_7 13

Setup_Tracker_6 14

Run_Tracker_8 17

put_Table_R_2 18

get_Table_R_2 20

put_Table_Trk_4 21

get_Table_Trk_4 23

add_Table_Trk_4 24

Cleanup_Table_Trk 25

print_Table_T 26

Display_Trk_Data_5 27

set_Trackstate 28

set_TrackHM_stat 29

set_Track_gates 30

Table of Contents con't

Shadow_Update 31

set_Track_Shadow 32

Predict_shlx_x 33

Kal_b_pred '• 35

Kal_c_pred • 36

smooth_shlx 37

Kal_b_smth 39

Kal_c_smth 40

first_smooth_shlx ; 42

abtrack_init 43

track_init_2 44

track_init_c • 4^

Assign_Cov_manu 4^

get_def_Cov_manu 48

Get_Semiaxes_3 4^

E_Gate_Semiaxes_3 •••• 50

get_sig_track 53

Scale_Shadow_Gates 54

Rotate_xy2xpyp 5^

Test_E_Gate 56

Test_Smile_Gate • 57

Pred_Shadow_Test 59

Test In Shadow 60

li

Table of Contents con't

Discrete_Test 61

E_Discrete_Test 62

TR_Assoc_Max_T 63

TR_Assoc_Min_D 64

cmp_track_age 65

get_track_ang 66

get_pred_ang 67

update_error 68

Load_P_DET 69

Load_dBuf_4 70

plot_dBuf : 71

111

Table of Figures

Figure 1-1 Tracker GUI Options 2

Figure 2-1 High Level Tracker Flow 3

Figure 2-2 Uncompensated Tracker Response for Maneuvering Target 6

Figure 2-3 Compensated Tracker Response for Maneuvering Target Track Oriented

Elliptical Gates used with 0.5g Across-Track Acceleration Allowance 7

Figure 2-4 Compensated Tracker Response for Maneuvering Target "Smile"

Shaped Centripetal Gates used with (0.0 - 0.5)g Across-Track

o
Acceleration Allowance

Figure 2-5 Tracker Response for Target Flying through Shadow

No Shadow Rule Applied

Figure 2-6 Tracker Response for Target Flying through Shadow

Shadow Rule Applied

Figure 2-7 Tracker Response for Target Passing Near a Discrete

Discrete Rule Applied

10

11

IV

1.0 Introduction and Overview

The purpose of this effort has been to provide ITT Systems & Sciences with a knowledge
based tracking capability that will support a space time adaptive processing (STAP)
environment. This has included the development of a basic multiple target tracker and the design
and testing of several knowledge based rules. A rule book containing 25 potential knowledge
based rules was developed and is presented in Volume V.

For the purpose of ITT's application, the main elements of the tracker software can be
imbedded in a larger STAP simulation by removing the GUI. The key tracking modules are
setup_Tracker_6 and Run_Tracker_8.

The Run_Tracker_module allows the use of three types of tracking filters. These include:

1. an uncoupled two state alpha beta filter with position and velocity component
states,

2. an uncoupled three state Kaiman filter with position, velocity, and acceleration
component states, and

3. an extended four Kaiman filter with both x and y position and velocity component
states.

The first two filters use a one dimensional measurement vector containing the report
position component. The extended Kaiman filter uses a three dimensional measurement vector
containing x and y report position and "pseudo" Doppler, the latter defined as range times range
rate.

The tracking software as delivered has been imbedded in a GUI structure that makes it
easy to exercise the tracker under a variety of conditions. Using the GUI, the user can
interactively select existing or new target scenarios and tracking options prior to tracker
execution. Figure 1-1 shows the list of available options.

GUI Interface

Run Demo Run Tracker

Scenario Radar Tracker

Inputs Inputs Inputs

• Default • Radio frequency • Default

• Existing • Range resolution • Track Parameters

• New • Azimuth resolution • Promotion Logic

• Doppler resolution
• CPI's per dwell
• False Alarm Probability
• Target SNR
• Pulse Repetition Frequency ▼

LP/HP* Hit Table
LP/HP Miss Table

* LP and HP denote low priority
and high priority, respectively

• Track Filter Type
• LP/HP Gate Multiplier
• LP/HP Tentative Gate Radius
• Maneuver Noise
• Alpha/Beta Filter Gains
• Target Priority

(max of 5 targets)
• Target Turn Interval

(max of 5 targets)
• Tracker Gate Type

Figure 1-1: Tracker GUI Options

2.0 Tracker Description
The first part of this section contains a narrative description of the basic multiple target

tracker. Detailed documentation has been provided in Section 3. This is followed by a
discussion of three knowledge based tracking rules that can be used to support the STAP
processor. Simple tracking simulations have been provided to illustrate the use of these rules.

2.1 Basic Tracker

A high level description of the multiple target tracker function is shown below in Figure
2-1. The tracker processes reports on a per scan basis and makes use of a track table that
contains several track attributes as well as kinematic information. The key attributes include the
tracks identification number, its state value, which is a measure of track quality, and its status.
Track status can be dropped, tentative, or firm. In the current software, a dropped status is
assigned to a track whose state has been demoted to zero, a tentative status is assigned to a new

track formed by an unused report with a state value initialized to one, and a firm status is given
to any track with a state value greater than one. The tracker's function consists of a correlation
section together with association and track maintenance sections.

Project Ahead
Track Gate Center

Query Intelligence
Test Shadow Status
Test Maneuver Status

Select Track Gate Parameters
- Gate Type
- Gate Size

Gather Reports

Evaluate Correlation between Reports and Tracks
- Form Correlation Matrix
- Form Distance Error Matrix

Select/Perform Association Logic
■ Nearest Neighbor: assign closest report to each track
■ Venerable Track: assign oldest track to each report

Perform Track Maintenance
■ Update Extant Track States
■ Spawn New Tentative Tracks with Unused Reports
■ Drop Tracks with State Values of Zero

Figure 2-1: High Level Tracker Flow

The correlation section is performed by testing for inclusion each current report against
each extrapolated track gate and forming a binary correlation matrix with ones in the capture
positions. Tentative track gates formed from unassociated reports are extrapolated by centering a
circle of kinematically-determined maximum radium about the report, whereas firm track gates
are extrapolated by using the track filter prediction equations. Track gate sizes are typically a
function of both the measurement and prediction uncertainties, as well as the track's maneuver
status. A distance matrix of the same size as the correlation matrix is also formed containing the
report-to-gate center distances.

The association and maintenance section uses the above correlation and distance error
arrays to assign reports and tracks in a unique manner. In the even that multiple reports are
common to a given track gate, or multiple tracks capture a common report, the association logic
will resolve the conflict. Furthermore, any reports that are not assigned to an existing track will
be used to spawn a new track designated to have a tentative status. Two simple association
logics are currently available. There is a "nearest neighbor" logic that assigns the closest
captured report to a given track and there is a "venerable track" logic that associates the oldest
common track to a given report.

After all tracks and reports have been associated, the track state promotion logic is
applied Track states are updated using either a "hit" or a "miss" table, depending on whether
they correlate with a report. These state tables are usually designed to require specified numbers
of successive hits and misses before a track is declared as firm or dropped. Two examples are
given below. In Case 1, tables Hitl and Missl allow a tentative track to build up to firm status at
state level 4 after three successive this, and to demote with each miss until it reaches state 0
where it is dropped. In Case 2, tables Hit2 and Miss2 show a more complex strategy. A
tentative track promotes up to a firm status of 3 after two hits. However, there are hold states 4,5
and 6 which allow the track to recover its firm status more quickly after a single miss.

Case 1

State 1 2 3 4

Hitl 2 3 4 4

Missl 0 1 2 3

Case 2

State 1 2 3 4 5 6

Hit2 2 3 3 5 3 3

Miss2 4 6 5 0 4 0

Once track state logic has been applied, the track table is updated. All tracks with state
values of 0 are removed from the table. Furthermore, all reports that were not associated with
extant tracks are used to spawn new tentative tracks that are added to the table.

2.2 Knowledge Based Rules

Knowledge based rules make use of extended map and intelligence information, and are
used to improve the tracker's ability to support STAP processing requirements. Key issues
include the tracking of targets in regions adjacent to large discretes, and in shadow zones that are
blocked from the radar-s line of sight. Using map information the tracker should also be able to
anticipate a target maneuver that will be required to avoid obstacles. Queued with this
information, the tracker will apply appropriately shaped track gates that enhance its capability of
capturing reports while maintaining reasonable gate sizes. Four rules are discussed below, along
with simple tracking simulations.

In the following examples single target tracks are displayed graphically with the
following conventions:

2.2.1 Tracking Legend:

+ Predicted gate center position

* Measured report position

o Coasted track position

• Extrapolated position of a missed detection

d Dropped tentative track

D# Dropped firm track

Corresponds to age (scans) of dropped track

In addition, all the results were obtained using an uncoupled Kaiman tracking filter and
all simulations assumed a ten second scan period.

2.2.2 Maneuver/Obstacle Rules:

Both alpha beta and Kaiman tracking filters do a good job with targets that move along a
constant heading with a fixed speed. Deviations from a straight path cause prediction errors to
occur and can ultimately result in a dropped track. Therefore it is important, whenever possible,
to anticipate target maneuvers by several scans. This allows time to make such adjustments as
increasing the gate size and track gain, or using a shaped gate to allow for across track deviations
caused by target turning.

If a track approaches an obstacle whose across track extent is H, a maneuver can be
anticipated to occur within a time extent no longer than Tmax. For this discussion, assuming a
constant target speed v and a maximum possible acceleration Amax, this extent is given by:

7™=-cos""1 (!-////>) max
V

where

denotes the radius of curvature of the target turn required to clear the obstacle. Somewhere
within this time period the tracker should apply its maneuver logic.

Figures 2-2 to 2-4 use the same section of track to illustrate the effect of different gating
strategies on the tracker's ability to handle a maneuvering target. Performance is computed for a
constant speed (250 meters/sec), high SNR (20 dB at mid range) Swerling 1 target, as it
approaches an obstacle (shaded rectangular region) from below and begins to turn after the
twenty third scan.

Figure 2-2 shows the response of an uncompensated tracking filter using a standard track
gate centered on the predicted gate center, and oriented along and across range with a size
dependent on both the measurement and prediction errors. No target acceleration has been

assumed and no maneuver noise has been added. While the straight line section is handled
adequately, the initial track begins to lose the target after the turn begins, whereupon it is
demoted to a dropped status on the next four scans. The three kilometer circular gates indicate
newly spawned tentative tracks that were subsequently updated to firm status.

140

135

130

•a 125
3
S 120

a
f 115
§
v 110

105

100

95

90

■

i . .1 : raj am'

■ i j ! igfgr
•::•:::: : '; • ; ; ,| ;...."

■

• :
: *

■
:• :

' * i

 ; ;♦ ; ; ; i ;...."
*

J!_J ; 1_; 1—i—i 1—■

60 70 80
x-coordinate (km)

90 100

Figure 2-2: Uncompensated Tracker Response for Maneuvering Target

The first maneuvering target rule specifies the use of shaped elliptical gates. Figure 2-3
shows the same target as tracked using a combination of two gates, both centered on the
predicted gate center. One gate is oriented along and across range, with a size determined by
range and angle measurement uncertainties. The second gate is oriented along and across the
targets instantaneous track and its size is a function of the maximum turning acceleration of the
target, assumed here to be 0.5g units. Reports capture occurs if the measurement falls within
either gate. Except for a missed report early in the linear part of the trajectory, causing the gate
to swell initially and then settle down, the track is maintained throughout the maneuver. Each
lower case d symbol indicates a dropped tentative track. This occurs when such a track fails to
capture a report on the following scan. The large three kilometer circles denote tentative tracks
that were successfully promoted to firm status. Finally, the dots occurring in both Figures 2-2
and 2-3, shown extrapolated from the straight line section of the approaching track, represent
missed detections. While actual gates existed for these cases, they have been drawn here only or
situations in which reports were captured.

140 "

135

130

o 125 1
a 120

 1 ! ©•
: : '«

*
 ;....«;

■*■•• €
es

Ü HS o

': •

 ; ;.*...
■

I no •
 'S~.^>.

•

105 (ä *

1UU

95

 •■','d":

QO
ft

60 70 80
x-coordinate (km)

90 100

Figure 2-3: Compensated Tracker Response for Maneuvering Target.
Track Oriented Elliptical Gates used with 0.5g Across-Track Acceleration Allowance

The second maneuvering target rule specifies the use of a gate whose shape is determined
solely by centripetal turning mechanics. Figure 2-4 shows the target being tracked using a
"smile shaped" gate whose shape is determined by the kinematic constraints imposed on a
constant speed target undergoing a centripetal maneuver. Let t range over the time interval from
the last track update till the next predicted report acquisition, Tscan seconds later. The maneuver
envelope is given by the xy locus of points, oriented along and across the track, and generated by
the equations:

x = vt + psind

y = p(\-cosO)

0 = v(Tscm-t)lp

where the radius of curvature p is defined as above. For this gate, a track capture occurs if the
measurement ellipse, centered on the measured report and oriented along and across range
intersects the smile locus. As in the previous example, this gate is able to maintain the track
throughout the target maneuver. One advantage of this gate is that is has a relatively small area
as compared with other maneuver gates and this makes it less likely to capture any false alarms.

140

135

130

o 125

2 120
03
C

V. 115

I no
105

100

95

90

^W>

■■**■••

60 70 80
x-coordinate (km)

90 100

Figure 2-4: Compensated Tracker Response for Maneuvering Target. "Smile" Shaped
Centripetal Gates used with (0.0 - 0.5) g Range of Across-Track Acceleration Allowance

2.2.3 Shadow Rule:

The shadow rule provides a means of preserving firm tracks that enter regions shadowed
from the radar line of sight. If the predicated track gate center falls within a designed shadow
region, both the track state and gate size will be frozen. Upon emerging from the shadow, state
promotion resumes and the gate size will not be allowed to exceed a maximum value. In the
tracker scenario used in Figures 2-5 and 2-6, only a minimal amount of acceleration noise, 0.05 g
units, was used in order to maintain a straight line coasting of the track through the shadow. As
previously, the target has a speed of 250 meters per second and the update scan time is 10
seconds.

Figure 2-5 shows a section of tracker response, when no shadow rule is in effect, for a
target approaching a shadow zone (shaded rectangle) from below. The three dots denote
extrapolated positions of the initial track where no reports were captured. After four demotions
the firm track that initially entered the shadow was dropped, as indicated by the D14 symbol. A
new tentative track was spawned, and promoted, once the predicted gate positions moved beyond
the shadow. Note that the D symbol has been placed at the last updated track position, just prior
to entering the shadow, where the track was 14 scans old.

115

—i ;—i

 ;.V...

 p —i 1 r-

110 :

1 105

«

.S 100
■g
©
©

£ 95

 ; ;

90 ;

85

65 70 75 80 85 90 95 100 105
x-coordinate (km)

Figure 2-5: Tracker Response for Target Flying through Shadow
No Shadow Rule Applied

Figure 2-6 shows the track history for the same target-shadow scenario when the shadow
rule was in place. The circles in the shadow denote coasted track positions at which the track
state was held fixed. Once the predicted gate position emerged from the shadow, there was a

moderate increase in gate size, after which it settled down, and the original firm track continued
undisturbed.

80 85 90 95
x-coordinate (km)

100 105

Figure 2-6: Tracker Response for Target Flying through Shadow
Shadow Rule Applied

2.2.4 Discrete Rule:

By tagging large radar returns, or discretes, the STAP processor can exclude regions
containing them from its covariance matrix element formation and thereby not use up limited
degrees of freedom on their cancellation. The discrete rule allows the tracker to coast through
any region containing one of these tagged returns and to essentially ignore it. If a known discrete
falls within a track gate, that track will be treated as if in a shadow and will not be updated.

In Figure 2-7, the same target speed, update time, and acceleration noise have been used
as in the shadow rule examples. A discrete has been inserted in the target trajectory as shown.
As indicated, the tracker preserves the state value of 4 as the predicted t gate positions passes
through the discrete.

10

E

=3
§

115

110

105

100

95

dUcrst» ——>•

state « 4

statt -4

ajtate»4

85 90 95 100
x-coordinate (km)

105

Figure 2-7: Tracker Response for Target Passing Near a Discrete
Discrete Rule Applied

The previous discussion looked at the implementation of four specific tracking rules.
However, many more rules that were considered relevant to the STAP problem were developed
during the course of this tracking study. In addition to the rule topics discussed here, issues
regarding the assignment of target priority, detection threshold, state promotion logic, and other
features were considered. A collection of twenty-five such rules are presented in the
"Knowledge-Based Tracker Rule Book" that is included in Volume V of this report. Included
with each rule is a discussion of its rationale, its impact on the overall knowledge based system
and interface requirements that might exist between the tracker, controller and radar.

3.0 Software Description

All tracking software used in this effort has been written in Matlab 5.1. A total of 49
modules are listed and documented below. These can be subdivided into three groupings
consisting of user interface, main tracker, and tracker utilities. The first two modules belong to
the user interface group. These are Tracker_GUI_7, which provides the graphical user interface
for the overall tracking simulation, and Setup_Tracker_6, which sets up the interface between the
tracker and the scenario generator. The main tracker group contains the multiple target tracking
module, Run_Tracker_8, which carries out all prediction, smoothing, and association operations
on report data on a per scan basis. Finally, the tracker utilities group contains all of the support
modules that are used by the tracker. It should be noted that some of the modules supporting the
user interface group have not been documented since that portion of the software is going to be
removed by the customer and replaced with their own hooks into the STAP simulation software.

11

User Interface Modules

Tracker_GUI_7
Setup_Tracker_6

Main Tracker Module
Run_Tracker_8

Tracker Utility Modules
put_Table_R_2
get_Table_R_2
put_Table_Trk_4
get_Table_Trk_4
add_Table_Trk_4
Cleanup_Table_Trk
print_Table_Trk
Display_Trk_Data_5
State_Update
set_Trackstate
set_TrackHM_stat
set_Track_gates
Shadow_Updates
set_Track_Shadow
predict_shlx_x
Kal_b_pred
Kal_c_pred
smooth_shlx
Kal_b_smth
Kal_c_smth
first_smooth_shlx
abtrack_init
track init 2

12

Module Name:

Calling Module:

Called Modules:

Inputs:

Outputs:

Globals:

Tracker_GUI_7

None

All_Defaults_4
Demo_Defaults_4
Read_Scenario_2
Write_Scenario_2
Track_Data_Gen_4
Radar_menu_3
Tracker_Opt_menu_2
Setup_Tracker_6
Run_Tracker_8

None

None

* * *Radar_menu_3 * * *
first_in_Radar
f_Ghz N_hits SNR0_dB Prf_kHz
DRng_m Az_mrad_3dB Dop_hz
Pfa SNR_fa_dB
Scenario_menu
script_name
Tracker_Opt_resp
* * *Track_Filter_menu* * *
Tfilt_resp
* * *Tracker_param_menu* * *
first_in_Tr_parm
Tfilt_resp
Mult_LP Mult_HP radius_TENT_LP radius_TENT_HP
Man_amt alpha beta Pri_T
Turn_int
gate_case
* * *Tracker_prom_menu * * *
first_in_Tr_prom
Hit_Tbl_LP Miss_Tbl_LP Hit_Tbl_HP Miss_Tbl_HP

fig_no_T
Time X-meas Y_meas pDop_meas report_ID
X_tru Y_trum pDop_tru
S11S12S13S22S23S33

13

ang_pred
ang_trk
gate_on
print_Trk_Tbl
text_on
N_shadow
x_sh_LO
x_sh_HI
y_sh_LO
y_sh_HI
In_Shadow
Nshadow dwells

Angle (radians) of prediction point
Angle (radians) of track
Draw track gate flag (1=> yes)
Print track gate flag (1=> yes)
Label track with text (1=> yes)
Number of shadow zones in scenario
Array of low x shadow tile values
Array of high x shadow tile values
Array of low y shadow tile values
Array of high y shadow tile values
In shadow flag (1=> yes)
Number of consecutive dwells in shadow

Globals:

Description:

Mult
Table_R
Table_T
DROPPED TENT FIRM
LPHP
SUMl_ERROR SUM2_ERROR
P_DET
HP_Buf
dBuf
Display_cnt

Initializes and sets up variables to be used by the Run_Tracker_8 program. Puts scenario
generator outputs in a form usable by tracker. Also adds false alarms to scenario
generation data.

16

Module Name:

Calling Modules:

Called Modules:

Inputs:

Outputs:

Globals:

Description:

Run Tracker 8

None (script file)

put_Table_R_2
get_Table_R_2
get_Table_Trk_4
put_Table_Trk_4
add_Table_Trk_4
predict_shlx_x
first_smooth_shlx
smooth_shlx
Get_Semiaxes_3
Test_E_Gate
Test_Smile_Gate
get_def_Cov_manu
Assign_Cov_manu
State_Update
set_Trackstate
set_TrackHM_stat
Pred_Shadow_Test
Shadow_Update
Discrete_Test
set_Track_Shadow
get_track_ang
get_pred_ang
update_error
TR_Assoc_Max_T
Display_Trk_Data_5
print_Table_T
Load_dBuf_4
plot_dBuf
Cleanup_Table_Trk

setup by Tracker_GUI_7 and
Setup_Tracker_6

None

None

The multiple target tracker processes report data collected during each scan and performs
three basic functions: track-report correlation, association, and maintenance.

17

Module Name:

Calling Module:

Called Modules:

Inputs:

Time
X_meas, Y_meas
FDop_meas
X_tru, Y_tru
FDop_tru
Sll S33
sig_Rng_km
sig_Az_rad
sig_Rdot_kmps
freq_GHz
Det_Level
Priorjntel
Manu_intel
report_ID
Nrep

Called Modules:

Inputs:

Time
X_meas, Y_meas
FDop_meas
X_tru, Y_tru
FDop_tru
Sll S33
sig_Rng_km
sig_Az_rad
sig_Rdot_kmps
freq_GHz
Det_Level
Prior_intel
Manu_intel
report_ID
Nrep
scan

Outputs:

put_Table_R_2

Run_Tracker

None

Time of radar blips
Measured position (km)
Measured pseudo Doppler (km*km/sec)
True position (km)
Truer pseudoDoppler (km*km/sec)
Measurement Covariance
Range Measurement error (km)
Azimuth measurement error (radians)
Range rate measurement error (km/sec)
Radio frequency of radar (gHz)
Detection level
Priority status
Maneuver status
Trajectory ID of report
Number of reports calling Module: Run_Tracker

None

Time of radar blips (sec)
Measured position (km)
Measured pseudo Doppler (km*km/sec)
True position (km)
True pseudoDoppler (km*km/sec)
Measurement Covariance
Range Measurement error (km)
Azimuth measurement error (radians)
Range rate measurement error (km/sec)
Radio frequency of radar (gHz)
Detection level
Priority status
Maneuver status
Trajectory ID of report
Number of reports calling Module: Run_Tracker
Current scan index

Table R

18

Globals: Table_R

Description:

Load the report table buffer for the current scan. All arrays are indexed as (report, scan)
and were created by a scenario generator.

19

Module Name:

Calling Module:

Called Modules:

Inputs:

rep

Outputs:

T_m
X_m, Y_m
FDop_m
Cov_m_vec
sig_rng_km_m
sig_crng_km_m
sig_Rdot_kmps_m
freq_GHz
Det_m
priority_in
maneuver_in
report_source
X_tru_m, Y_tru_m
FDop_tru_m
error status

Globals:

get_Table_R_2

Run_Tracker_8

None

report index

Blip time (sec)
Measured position (km)
Measured Doppler (km*km/sec)
Measured covariance vector
Range measurement error (km)
Cross range measurement error (km)
Range rate measurement error (km?sec)
Radar rf frequency (gHz)
Detection level
Priority Status
Maneuver status
Trajectory ID
True position (km)
True pseudoDoppler (km*km/sec)
not used

Table R

Description:

Fetch report table data for current scan.

20

Module Name:

Calling Module:

Called Modules:

Inputs:

trk
TID
status
state
report
scanl
trkjype
Z_m
Cov_m_vec
T_m
priority
maneuver
Z_p
Cov_p_vec
Z_s
Cov_s_vec
HM_flg
ang_trk
x_s_2LST
y_s_2LST
T_s_2LST
semi_rng_T
semi_crng_T
semi_trk_T
semi_ctrk_T
In-Shadow
Nshadow_dwells
gate_case
Accel_max
sig_rng_km
sig_crng_km
sig_Rdot_kmps2

Outputs:

put_Table_Trk_4

Run_Tracker_8

None

Track index
Track ID number
Track status (drop, tentative, firm)
Track state (quality index; 0 => dropped)
Captured report index
Scan index when track became firm
Tracker type (alpha beta, unc/extd Kaiman)
Measurement state vector
Measurement covariance vector
Measurement of time of captured report
Priority status of track
Maneuver status of track
Prediction state vector
Prediction covariance vector
Smoothed state vector
Smoothed covariance vector
Track capture flag (0 => miss, 1 +. hit)
Track angle (radians)
Last track x position (km)
Last track y position (km)
Last track time (sec)
along range semi axis (km)
cross range semi axis (km)
along track semi axis (km)
cross track semi axis (km)
Shadow status flag (0 => not in)
Number of successive dwells in shadow
Track gating choice (0:3)
Maximum acceleration (km/sec*sec)
range measurement error (km)
cross range measurement error (km)
range rate meas error (km*km/sec)

error_status
Table T

21

Globais: TableJT

Description:

Updates track table data for current scan and report index.

22

Module Name:

Calling Module:

Called Modules:

Inputs:

Outputs:

TID

get_TabIe_Trk_4

Run_Tracker_8

None

trk

same as inputs to put_Table_Trk_4
same as inputs to put_Table_Trk_4

sig_Rdot_kmps2

Globals: TableJT

Description:

Fetch track table data for current scan and report index.

23

Module Name:

Calling Module:

Called Modules:

Inputs:

Ntrk
num_new_trks
TID New

add_Table_Trk_4

Run_Tracker_8

None

same as inputs to put_Table_Trk4

sig_Rdot_kmps2

Outputs:

Globals

error_status
Table_T

Table T

Description:

Insert new tentative tracks into track table.

24

Module Name: Cleanup_Table_Trk

Calling Module: Run_Tracker_8

Called Modules: None

Inputs: None

Outputs:

Ntrk Number of valid track

Globals: Table_T

Description:

Updates track table for next scan. Sorts Table_T by column 3 (state) and removes all
zero states. Counts number of remaining valid tracks and returns this value.

25

Module Name: print_Table_T

Calling Module: Run_Tracker_8

Called Modules: None

Inputs:

Ntrk
sup

Number of track sets to be printed (max =
vector of Table_T indices to be printed

= 10)

Outputs: prints to command tool

Globals: Table T

Description:

Prints track table information as columns (one per track). Support vector sup is subset of
{1:86} corresponding to fields in Table_T.

26

Module Name:

Calling Module:

Called Modules:

Display_Trk_Data_5

Run_Tracker_8

Draw_Grid
get_Table_Trk_4
get_Table_R_2
Assign_Cov_manu
predict_shlx_x
get_sig_track
get_pred_ang
E_Gate_Semiaxes
Draw_Smile_Gate
Draw E Gate 2

Inputs:
Ntrk
scan
scan_period
sig_rng_km_nom
sig_Az_rad_nom
plot_vec
x_v, y_v
dx, dy
gate_on
text_on
fig_no
symbol_l
symbol_2
semi-max

Outputs:

Number of tracks to be plotted
current scan index
scan time (sec)
not used
not used
plot scale: (xmin, xmax, ymin, ymax)
x and y grid point sets
x and y grid spacing
Draw track gate flag (1 => yes)
Print Text gate
plot figure number
rng-cross rng aligned gate symbol
trk-cross trk aligned gate symbol
maximum gate size allowed

graphical display in figure (fig_no)

Globals:

Description:

Display_cnt
Table_R Table_T
DROPPED TENT FIRM LP HP
Mult_LP Mult_HP radius_TENT_LP radius_TENT_HP
sig_trk_km sig_ctrk_km gate_case
Cov_man20 Cov_man30 Cov_man_acc_x Cov_man_acc_y

The module serves as a diagnostic and display tool for the multi target tracker. It
displays predicted and measured positions prior to track table cleanup and draws track
gates centered on predicted positions.

27

Module Name: set_Trackstate

Calling Module: Run_Tracker_8

Called Modules: None

Inputs:

state
trk

Outputs: None

Globals: Table_T

Description:

Inputs state value into track table at index trk.

28

Module Name: set_TrackHM_stat

Calling Module: Run_Tracker_8

Called Modules: None

Inputs:

HM_flg
trk

Capture/shadow status of track
Track index

Outputs: None

Globals: Table T

Description:

Inputs the track capture/shadow status into track table.

29

Module Name: set_Track_gates

Calling Module: Run_Tracker_8

Called Modules: None

Inputs:

semi_rng_T
semi_crng_T
semi_trk_T
semi_ctrk_T
trk

Along range semi axis of ellipse gate
Cross range semi axis
Along track semi axis
Cross track semi axis
Track table index

Outputs: None

Globals: Table.T

Description:

Inputs ellipse gate semi axes into track table corresponding to index trk.

30

Module Name:

Calling Module:

Called Modules:

Shadow_Update

Run_Tracker 8

set_Track_Shadow
set TrackHM stat

Inputs:

trk Track index into TableJT
In_Shadow Shadow status flag (1 => in shadow)
Nshadow_dwells_last Number of scans input trk in shadow
HM_flg_last Capture/shadow status of input trk

Outputs:

Globals:

Description:

None

Table T

Updates track shadow status corresponding to index trk. If track is in a shadow, the
number of shadow dwells is incremented and the capture status is set to the number 2.
Otherwise, the number of dwells is et to zero and the capture status maintained.

31

Module Name: set_Track_Shadow

Calling Module: Run_Tracker_8 Shadow_Update

Called Modules: None

Inputs:

Nshadow_dwells
In_Shadow
trk

Number of consecutive dwells in
in shadow status flag
Index into Table_T

Outputs: None

Globals: Table_T

Description:

Inputs shadow parameters into track table corresponding to index trk. These include (1)
the # of consecutive dwells of track in a shadow, and (2) the in-shadow status flag (0 =>
not in shadow, 1 => in shadow).

32

Module Name:

Calling Module:

Called Modules:

Inputs:

type

Z s last
Cov. _s_last_vec
Cov. _man_x
Cov. _man_y
Cov man
dT

Outputs:
Z-P
Cov. _p_vec

Globals:

Description:

predict_shlx_x

Run Tracker 8

Kal_b_pred
Kal_c_pred

Tracking filter type (1:3 +. alpha beta, uncoupled Kaiman, and
extended Kaiman)
Smoothed state vector at last scan
Smoothed covariance array at last scan
Maneuver covariance matrix of x component
Maneuver covariance matrix of y component
Maneuver covariance matrix of extended Kal
Time interval from last update to present

Prediction state vector
Prediction covariance matrix

None

Computes predicted state vector and Covariance array, Z_p and Cov_p_vec, respectively.
The method used depends on the tracking filter type specified. The maneuver covariance
matrices provide a means for inputting acceleration noise to increase track gate size for
the Kaiman filter cases

Equations:

alpha beta:
X_p = x_s_last + vx_s_last * dT
Y_p = y_s_last + vy_s_last * dT
Vx_p = vx_s_last
Vy_p = vy_s_last

where the components X_p, Vx_p, etc., are related to the state vectors Z_p, Z_s_last, etc.
by stacking the x and y components of position, velocity, and acceleration

Z= [X;Vx;Ax;Y;Vy;Ay]

33

Uncoupled Kaiman:
see Kal_b_pred

Extended Kaiman:

see Kal_c_pred

34

Module Name:

Calling Module:

Called Modules:

Inputs:

Z_s_in

dt_in
Cov_manu
Cov s in

Outputs:
Z_p_out
Cov_p

Globals:

Description:

Kal_b_pred

predict_shlx_x

None

3x1 Smoothed input state vector (either component)
[Position; Velocity; Acceleration]
Time since last update

3x3 Covariance matrix of maneuver noise
3x3 Smoothed input covariance matrix (either component)

[Position; Velocity; Acceleration]

3x1 Prediction state vector (corresponding component)
3x3 Prediction covariance matrix

Table T

Computes 3x1 prediction state vector and 3x3 prediction covariance matrix for the case
of an uncoupled Kaiman filter. All input and output state vectors are assumed to be 3 x 1,
and all covariance matrices are 3 x 3.

Equations:

<j> =
1 dT 0.5{dT)2

0 1 dT
0 0 1

; 3 x 3 state transition matrix

Z_p_out=<}>*Z_s_in

Cov_p=(|>*Cov_s_in*<|)'+Cov_manu

(<))' denotes the transpose of (())

35

Module Name:

Calling Modules:

Called Modules:

Inputs:

Kal_c_pred

predict_shlx_x

None

Z s in

dt in

Cov manu

Cov s_in

4x1

4x4

4x4

Smoothed input state vector

[X_s_in; Vx_s_in; Vy_s_in]

Time since last update

Covariance matrix of maneuver noise

Smoothed input covariance matrix

Outputs:

Z_p_out

Cov_p

4x1

4x4

Prediction state vector

[X_p_out; Vx_p_out; Y_p_out; Vy_p_out

Prediction covariance matrix

Globals: None

Description:

Computes 4 x 1 prediction state vector and 4 x 4 prediction covariance matrix for the case
nf en PYtMiHftH Kaiman filter. All input and output state vectors are assumed to be 4 x 1, of an extended Kaiman filter. All input and output
and all covariance matrices are 4 x 4.

Equations:

<l> =

"1 dT 0 0
0 10 0
0 0 1 dT
0 0 0 1

; 4 x 4 state transition matrix

Z_p_out = 0 * Z _ s _ in

Cov _p = <p* Cov _s _in* f+Cov _man

(<()' denotes the transpose of <)))

36

Module Name:

Calling Module:

Called Modules:

smooth_shlx

Run Tracker 8

Kal_b_smth
Kal c smth

Inputs:
type

Z_m
Z_p
Cov_p_vec
Cov_m_vec
dT

Outputs:
Z_s
Cov_s_vec
Gain mat

Tracking filter type (1:3 => alpha beta, uncoupled Kaiman, and
extended Kaiman)
Measurement vector (x;y;pDop)
Prediction state vector (X;Vx;Ax;Y;Vy;Ay)
Prediction cov array (Cov_p_x;Cov_p_y)reshaped to 1 x 18
Meas cov array 1x9
Time interval from last update to present

Smoothed state vector (X;Vx;Ax;Y;Vy;Ay)
Smoothed cov array (Cov_s_x;Cov_s_y)reshaped to 1 x 18
Gain matrix (not used by tracker)

Globals:

Description:

alpha beta

Computes smoothed state vector and Covariance array, Z_s and Cov_s_vec, respectively.
Also returns a gain matrix (not normally used) which can be used for diagnostic
purposes. The smoothing method used depends on the tracking filter type specified.

Equations:

alpha beta:

where

Dx = x_m - X_p
x_s = X_p + alpha * Dx
Vx_s = Vx_p + beta * Dx/dT

Dy = y_m - Y_p
y_s = Y_p + alpha * Dy
Vy_s = Vy_p + beta * Dy/dT

Z_m = [x_m; y_m; pDopjtn)

and Z_p and Z_s are 6 x 1 vectors of the position, velocity and acceleration components

37

Uncoupled Kaiman: see Kal_b_smth

Extended Kaiman: see Kal_c_smth

38

Module Name:

Calling Module:

Called Modules:

Inputs:

Z_m
Z_p_out

Cov_p
Cov_s_in
var_meas

Outputs:
Z_s_out

Cov_s_out
Res
dist_Res_2
S

Globals:

Description:

Kal_b_smth

smooth_shlx

None

3x1
3x1

3x3
3x3

3x1

3x3
3x1

3x1

None

Measurement vector [x_m;y_m;pDop_m]
Prediction state vector (either component)
[Position; Velocity; Acceleration]
Covariance matrix of maneuver noise
Prediction covariance matrix
Measurement variance

Smoothed output state vector (either component)
[Position; Velocity; Acceleration]
Smoothed output covariance matrix
Residual error vector (Innovations)
Statistical distance
Gain matrix

Computes 3 x 1 smoothed state vector and 3 x 3 smoothed covariance matrix for the case
of an uncoupled Kaiman filter. All input and output prediction and smoothed state
vectors are assumed to be 3 x 1, and all covariance matrices are 3 x 3.

Equations:

(for either x or y component)
M = [1 0 0]; Measurement Matrix (1 Measurement x 3 states)
I_Cov_Res = 1/(M * Cov_p * M'+ var_meas)
S = Cov_p * M' * I_Cov_Res; Gain Matrix (3 states x 1 measurement)
Z_s_out = Z_p_out + S * (Z_m - M * Z_p_out)
Cov_s_out = (I - S * M) * Cov_p
Res = (Z_m - M * Z_p); Innovations
dist_Res_2 = Res * I_Cov_Res * Res'; Statistical distance

39

Module Name:

Calling Modules:

Called Modules:

Inputs:

Kal_c_smth

smooth_shlx

None

Z m

Z_p_out

Cov_p

Cov meas

3x1

4x1

4x4

3x3

Measurement vector (3x1)
[x_m;y_m;pDop_m]

Prediction state vector [X; Vx; Y; Vy]

Prediction covariance matrix

Measurement Covariance

Outputs:

Z s out

Cov_s_out

Res

dist_Res_2

4x1

4x4

3x1

4x3

Smoothed output state vector [X; Vx; Y; Vy]

Smoothed output covariance matrix

Residual error vector (Innovations)

Statistical distance

Gain Matrix

Globals:

Description:

None

Computes 4 x 1 smoothed state vector and 4 x 4 smoothed covariance matrix for the case
of an extended Kaiman filter. All input and output prediction and smoothed state vectors
are assumed to be 4 x 1, and all covariance matrices are 4 x 4.

Equations:

M =
1
0

0
0

M„ M 31 32

0 0
1 0
f33 M34J

; Measurement matrix (3 Measurements x 4 states)

where

M31 = 0.5 * Z_p_out (2)
M32 = 0.5*Z_p_out(l)
M33 = 0.5 * Z_p_out (4)
M34 = 0.5 * Z_p_out (3)

40

Note that
(pDop)eSt = M3] * X_p + M32 * Vx_p + M33 * Y_p + M34 * Vy_p

I_Cov_Res = (M * Cov_p * M' + Cov_meas)-1
S = Cov_p * M' * I_Cov_Res; 4 x 3 Gain Matrix (4 states x 3 measurements)
Res = (Z_m - M * Z_p_out); 3 x 1 Innovations
Z_s_out = Z_p_out + S * Res 4 x 1
Cov_s_out = (I - S * M) * Cov_p 4x4
dist_Res_2 = Res; * (I_Cov_Res) * Res

41

Module Name:

Calling Module:

Called Modules:

Inputs:

type

Z_m _last
Z m
Cov m vec
dT

Outputs:
Z s out
Cov s vec

Globals:

first smooth shlx

Run Tracker 8

abtrack_init
track_init_2
track init c

Track filter type (1:3 => alpha beta, Uncoupled Kaiman, and
extended Kaiman
Measured vector (last update)
Measured vector (current)
Meas Covariance array (current)
Time interval (sec) from last update

Smoothed state vector
Smoothed covariance array

None

Description:

Performs smoothing of tentative tracks

Equations:

alpha beta:

Uncoupled Kaiman:

Extended Kaiman:

see abtrack_init

see track_init_2

see track init_c

42

Module Name:

Calling Module:

Called Modules:

Inputs:

(xl,yl)
(x2, y2)
dT12

Outputs:

(x_s, y_s)
(vx_s, vy_s)
ang_trk

Globals:

Description:

abtrack_init

first_smooth_shlx

None

Last updated track position
Current track position
Time interval (sec)

Smoothed track position
Smoothed tracked velocity
Track angle (radians)

None

Does a two point initialization of an alpha beta tracker using current and last track
positions and their time interval.

Equations:

Dx = (x2-xl)
x_s = x2
vx_s = Dx/dT12

Dy = (y2-yl)
y_s = y2
vy_s=Dy/dT12

ang_trk = arctan (Dy/Dx)

43

Module Name:

Calling Module:

Called Modules:

Inputs:

Delt
z_pos_l
z_pos_2
var_pos_m_2

Outputs:

Z_s_in
P s in

Globals:

Description:

track_init_2

first_smooth_shlx

None

Time (sec) between current and last update
Last position component update (x or y)
Current position component (x or y)
Measurement variance of position component

Smoothed state vector (3x1)
Smoothed covariance matrix (3 x 3)

None

Does a two point initialization of an uncoupled Kaiman tracker. This routine is applied
separately to both the x and y components of target motion.

Equations:

pos_s = z_pos_2
vel_s = (z_pos_2 - z_pos_l)/Delt
Z_s_in = [pos_s; vel_s; 0]

P_s_in =
Pxn Px
Px„ Px

0

12
v12
0

'22

0
0
0

where

Pxn =var_pos_m_2
Pxi2 = Pxn/Delt
Px22-Pxn/(Delt)2

44

Module Name: track init c

Calling Module:

Called Modules:

first smooth shlx

None

Inputs:

Delt
(xl.yl)
(x2, Y2)
sig_xx
sig_yy
sig_xy

Outputs:

Z_s_in
P s in

Globals:

Time (sec) between current and last update
Last position update
Current position
Measurement covariance xx comp
Measurement covariance yy comp
Measurement covariance xy comp

4x1 Smoothed state vector
4x4 Smoothed covariance matrix

None

Description:

Does a two point initialization to be used with the extended Kaiman track filter.

Equations:

Let T = Delt, T2 = T2
sig _x = Jsig _ xx,sig _ v = Jsig _ yy

pos_sx = x2, pos_sy = y2; smoothed positions
vel_sx = (x2 - xl)/T, vel_sy = (y2 - yl)/T ; smoothed velocities
Z_s_in = [pos_sx; vel_sx; pos_sy; vel_sy]

P» ^i

P s in = 12

L13

Pl4

12

P22

P23

24

'13

P23

P33

P34

'14

24

34

;44

where
Pn = sig_xx, Pi2 = 1.5 * Pn/r, Pi3 = sig_xy; Pi4 = 1.5 * sig_x * sig_y/T
P22 = 6.5 Pn/T2; P23 = Pn, P24 = sig_xy/T2
P33 = sig_yy,P34 = 1.5*P33A,

P44 = 6.5 * P33/T2

45

Module Name:

Calling Module:

Called Modules:

Inputs:

trkjype
scan
manu_rep
rep_source

Outputs:

Cov_man
Cov_man_x
Cov_man_y

Globals:

Description:

Assign_Cov_manu

Run_Tracker_8

get_def_Cov_manu

Track filter type
Current scan
Maneuver anticipation status flag
Maneuver anticipation interval (scan lo, scan hi)

Maneuver covariance matrix

Cov_man20
Cov_man30
Cov_man_acc_x
Cov_man_acc_y
Turn int

Sets up the maneuver covariance matrix. If a maneuver has been anticipated for the
current scan then maneuver noise is applied. Otherwise a small value (essentially zero) is
loaded into the matrix.

Equations:

Accel_max = Maximum maneuver acceleration (km/s)
var_acc = (Accel_max)2

var_vel = (Accel_max * scan_period)2

var_pos = (0.5 * Accel_max * (scan_period)0 2x2

Cov man =
var_ pos

0
0

0
var_ vel

0

0
0

var ace
; trk_type * 3

46

Cov man =

\ar_pos
0

0
\ar_vel

0
0

0
0

0
0

var_ pos
0

0
0
0

var_ve/

; trkjype = 3

Cov_man_x = Cov_man_y = Cov_man

47

Module Name: get_def_Cov_manu

Calling Module: Assign_Cov_manu

Called Modules: None

Inputs:

trk_type Track filter type

Outputs:

Cov_man Maneuver covariance matrix
Cov_man_ _x
Cov_man_ J

Globals:
Cov_man20
Cov man30

Description:

Loads default values into maneuver covariance matrices.

Equations:

Cov_man = Cov_man20; trk_type*3
Cov_man = Cov_man30; trk_type = 3
Cov_man_x = Cov_man_y = Cov_man;

where

Cov_man20 = le-10 * eye (3)
Cov_man30 = le-6 * eye (4)

48

Module Name: Get Semiaxes 3

Calling Module:

Called Modules:

Inputs:
In_Shadow
In_Shadow_last
Nshadow_dwells_
gate_case
trk_type
Mult
Accel_max
dT
ang_pred
ang_trk
sig_mg_km_m
sig_crag_km_m
Z_s_last
Z_p
Cov_p_vec
semi-rng_T_last
semi_crng_T_last
semi_trk_T_last
semi_ctrk_T_last
semi max

Outputs:
semi_rng_T
semi_crng_T
semi_trk_T
semi ctrk T

Globals:

Description:

Run Tracker 8

E_Gate_S emiaxes_3
get_sig_track
Scale_Shadow_gates

Current in shadow flag (1 => yes)
Last update in shadow flag

last Number of successive dwells in shadow as of last update
Gate type flag (0:3)
Track filter type (1:3)
Gate size multiplier
Maximum assumed acceleration
Time (sec) since last update
Angle (rad) of predicted point wrt radar cs
Angle (rad) of track wrt radar cs
Range measurement error (km)
Cross range measurement error (km)
Smoothed state vector (last update)
Prediction state vector (current)
prediction covariance array (current)
Along range semi axes (last)
Cross range semi axes (last)
Along track semi axes (last)
Cross track semi axes (last)
Maximum allowed semi axis size

Along range semi axes (current)
Cross range semi axes (current)
Along track semi axes (current)
Cross track semi axes (current)

None

Computes the semi axes for the two orientations of elliptical gates used. The first type is
oriented along and across range and the second is oriented along and across track. Tracks
that are in a shadow have their gate sizes frozen. Otherwise, track gates sizes are
determined as a function of the gate case and track filter type selected. This function is
done by the routine E_Gate_Semiaxes_3.

49

Module Name:

Calling Module:

Called Modules:

Inputs:

gate_case
trk_type
Mult
Z_p
Cov_p_vec
ang_pred
sig_rng
sig_cmg
ang_trk
sig_trk
sig_ctrk
semi max

Outputs:

semi_rng
semi_crng
semi_trk
semi ctrk

Globals:

Description:

E_Gate_Semiaxes_3

Get_Semiaxes_3

Rotate_xy2xpyp

Gate type flag (0:3)
Track filter type (1:3)
Gate size multiplier
Prediction state vector (current)
prediction covariance array (current)
Angle (rad) of predicted point wrt radar cs
Range measurement error (km)
Cross range measurement error (km)
Angle (rad) of track wrt radar cs
Along track measurement error (km)
Cross track measurement error (km)
Maximum allowed semi axes size

Along range semi axes (km)
Cross range semi axes (km)
Along track semi axes (km)
Cross track semi axes (km)

None

Computes semi axes for elliptical gates oriented along/cross range, and oriented
along/cross track. Results depend on which of three gate cases are chosen (cases 1 and 2
require a Kaiman filter). In each case the along/cross track gate sizes are computed as
scaled versions of the along/cross track measurement errors. However, the along/cross
range oriented gate sizes are case dependent. Gate case 1 combines in an rss fashion (1)
range and cross range measurement errors from the last track update, and, (2) current
prediction covariance estimates in x and y, projected onto the range/cross range axes.
The composite gate is formed by multiplying this result by a scale factor. Gate case 2
uses only the scaled prediction covariance estimates in x and y to form the gate. Gate
case 3 uses the scaled along/cross range measurement errors to form this gate.

Equations:

50

The quantities sig_rng and sig_crng are measurement errors along range and cross range
computed from the last report captured by a given track and stored in the track table. The
quantities sig_trk and sig_ctrk are based on kinematical assumptions and are computed in
get_sig_track.

alpha beta filter:
semi_rng sig_rng
semi_crng sig_crng
semi_trk sig_trk
semi_ctrk sig_ctrk

Kaiman filters:

:jl.
I j

5M«/f,(gate_case<3)
Mult , (gate_case = 3)

Get prediction uncertainty along x and y directions (cpx, opy) from the covariance array
Cov_p_vec.

(gate_case =1)

A8 = (ang_pred - ang_trk)
Compute projections of opx and opy onto the range-cross range axes.

<V~| = rcos(A0)% sin(A0 px

sin(A#) cos(Aö)

Form the "root sum square" (Rss) of opx- and opy-with the measurement errors

semi_rng = Mult * yj(opx')2 + (sig_rng)2

semi_crng = Mult * ^{opx')2 + (sig_crng)2

semi_trk = Mult * sig_trk

semi_ctrk = Mult * sig_ctrk

(gate_case = 2)

0 = ang_trk

Compute projections of opx and apyonto track-cross track axes.

px cos(ö) sin(0
rtAn(0) cos{9)

px

py.

51

semijrng
semi_crng
semi_trk
semi_ctrk

= Mult*

sig_rng
sig_cmg

px

py

(gate_case = 3)

semi_rng
semi_crng
semi_trk
semi ctrk

= Mult*

sig_rng
sig_crng
sig_trk
sig_ctrk

52

Module Name:

Calling Module:

Called Modules:

Inputs:

Z_s
Accel_max
dT

Outputs:

sig_trk_km
sig_ctrk_km

Globals:

Description:

get_sig_track

Get_Semiaxes_3

None

Smoothed state vector
Maximum allowed acceleration (km/s*s)
Time (sec) since last update

Along track uncertainty (km)
Cross track uncertainty (km)

None

Computes along/cross track uncertainties. The along track uncertainty is computed as
0.5*A*(dT)2 with the along track acceleration A assumed bounded by 0.5g. The across
track uncertainty is assumed to be due to constant speed turning only.

Equations:

Define the following quantities:

Acc_at = along track acceleration < Accel_max
V_kmps = estimated track speed
pkm = radius of curvature of turn (km)
Ang = angle of turn voer time dT (radians)

pkm = (V_kmps) /Accel_max
ang = V_kmps * dT/pkm

sig_trk_km = 0.5 Acc_at (dT)2

sig_ctrk_km = pkm (1 - cos (Ang))

53

Module Name: Scale_Shadow_Gates

Calling Module: Get_Semiaxes_3

Called Modules: None

Inputs:

gate_scale Gate size multiplier
semi-rng_T_in Along range semi axis (input)
semi_crng_T_in Cross range semi axis (input)
semi_trk_T_in Along track semi axis (input)
semi_ctrk_T_in Cross track semi axis (input)

Outputs:

semi_rng_T_out Along range semi axis (output)
semi_crng_T_out Cross range semi axis (output)
semi_trk_T_out Along track semi axis (output)
semi_ctrk_T_out Cross track semi axis (output)

Globals:

Description:

None

Multiplies input gate semi axes by a scale factor.

54

Module Name: Rotate_xy2xpyp

Calling Module: E_Gate_Semiaxes_3

Called Modules: None

Inputs:

ang_rad
Z

Rotation angle (rad)
Input two component vector

Outputs: Rotated two component vector

Globals: None

Description:

Rotates the two component vector Z through angle angjrad

Equations:

9 = ang_rad and

Let Rot=[co.s%
[- sm{9)

sinteV
cos(0)

Z_p = Rot * Z

55

Module Name:

Calling Module:

Called Modules:

Inputs:

Z_m
Z_p
ang_rotn
semi_along
semi_across

Outputs:

In_E_Gate

Globals:

Description:

Test_E_Gate

Run_Tracker_8

Rotate_xy2xpyp

Measurement state vector (x;y;pDop)
Prediction state vector (x;vx;ax;y;vy;ay)
Rotation angle wrt radar cs (radians)
Semi axis length along rotated x
Semi axis length along rotated y

Inclusion test flag (1 => inclusion)

None

Tests if measured point Z_m lies within an ellipse which is (1) oriented at an angle
"ang_rotn" with respect to the radar coordinate system, (2) centered on the predicted
position, Z_p, and, (3) has semi axes of length semi_along and semi_across. Returns a
value of zero if test fails, and a value of one if test passes.

Equations:

Let (Xm, Ym) and (Xp, Yp) denote the measured predicted points, respectively. Transform
the predicted-measurement position error into the local coordinate system of the ellipse,
centered on the predicted point. The transformed residual errors (AX', AY') are

»
Rot *

xp-xr
Yp-Y„

where

Ye = semi_across * -y/i - (AX7 semi_along)2

The condition for inclusion of (Xm, Y„0 within the ellipse is

|AF1 < Ye and

lAX'l < semi_along

56

Module Name:

Calling Module:

Called Modules:

Inputs:

T_s
Z_m
Z_p
Z_s_last
x_last_km
y_last_km
ag_HI
semi_rng
semi_crng

Outputs:

In_gate_m

Globals:

Test_Smile_Gate

Run_Tracker_8

None

Scan period (sec)
Measurement state vector (x;y;pDop)
Prediction state vector (x;vx;ax;y;vy;ay)
Smoothed state vector (last update)
x position (last update)
y position (last update)
Maximum turn acceleration (g units)
Measurement ellipse semi axis along range
Measurement ellipse semi axis cross range

Inclusion test flag (1 => included)

None

Description:

Tests if measurement ellipse intersects centripetal maneuver "smile" shaped gate.

Equations:

The smile gate envelope is defined by two equations that are parameterized by the time t,
ranging from the current report time to one scan period later. Let v denote the constant
target speed and p be the radius of curvature of the turn. Then

p = v2/(9.8 * ag_HI) and
Ang = v (T_s - t)/p.

With these the equations for the maneuver envelope in the local track coordinate system,
centered on the last smoothed position, are

x's = vt + psin(ang)

v,'=/7(l-cos(ang))

The gate test is performed by:

57

(1) Transforming the boundary points (x \ , y \) to the radar coordinate system

[x, "I = ["xjastjanl |"cos(0 ttk) - sin(0 trk)
[yj |_yjast_kmj Lsin(0trk) cos(6tric)

where Gt* denotes the instantaneous track angle.

(2) Transforming (xs, ys) to local coordinate system centered on the measured point and
oriented at the angle of the measured point 0m.

AX;
Ay;

cos6. sinG,
-sinGm cos(0m)_

xs " Xm

;s ~ J m

(3) Test each maneuver envelope point for inclusion within the measurement ellipse

|AX'S1 < semi_rng

Ye = semi_crng -y/l-(AX "I semi_rng)2

58

Module Name:

Calling Module:

Called Modules:

Inputs:
trkjype
Z_s_last
Cov_s_last_vec
dT

Outputs:
Z_p
In Shadow

Globals:

Description:

Pred ShadowTest

Run Tracker 8

get_def_Cov_manu
predict_shlx_x
Test In Shadow

Type of tracking filter (1:3)
Smoothed state vector (last update)
Smoothed covariance array (last update)
Time interval (sec) since last update

Prediction state vector
Shadow status flag (1 => in shadow)

Cov_man20 Cov_man30
x_sh_LO x_sh_HI y_sh_LO y_sh_HI

Tests if predicted position falls within a shadow region. Sets flag to 1 if in shadow. [The
shadow zones were specified as a set of rectangular tiles by the scenario generator. The
array x_sh_LO, x_sh_HI, y_sh_LO, and, y_sh_HI specify low and high positions of each
time.]

59

Module Name:

Calling Module:

Called Modules:

Inputs:
Z_p
x_sh_LO
x_sh_HI
y_sh_LO
y_sh_HI

Outputs:

In_Shadow

Globals:

Description:

Test_In_Shadow

Shadow_Test

None

Prediction state vector (x;vx;ax;y;vy;ay)
Array specifying low x position of shadow tiles
Array specifying high x position of shadow tiles
Array specifying low y position of shadow tiles
Array specifying high y position of shadow tiles

In shadow status flag (1 => in shadow)

None

Tests if predicted position falls within any of the shadow tiles that were specified by the
scenario generator.

60

Module Name:

Calling Module:

Called Modules:

Inputs:
Z_p
gate_case
ang_pred
semi_rng_T
semi_crng_T
ang_trk
semi_trk_T
semi_ctrk_T

Outputs:

In_Discrete

Globals:

Description:

Discrete_Test

Run_Tracker_8

E Discrete Test

Prediction state vector
Gate case flag (1:3)
Angle (rad) of predicted point
Semi axis length of along range ellipse
Semi axis length of cross range ellipse
Angle (rad) of track
Semi axis length of along track ellipse
Semi axis length of cross track ellipse

Discrete capture flag (1 => discrete present)

None

Tests if discrete point falls within either of two gates oriented along/across range or
along/cross track.

Equations:

(gate_case =1)

Each discrete point is tested for inclusion in a single ellipse, centered on the predicted
point, and oriented along range/cross range. The semi axes are given by semi_rng_T and
semi_cross_T.

(gate_case >1)

Each discrete point is tested for inclusion if either of two ellipses, both centered on the
predicted point. The first ellipse is the same as defined above. The second ellipse is
oriented along track/cross track and has semi axes given by semi_trk_T and semi_ctrk_T.

61

Module Name:

Calling Module:

Called Modules:

Inputs:
Z-P
ang_rotn
semi_along
semi_across

Outputs:
In_Discrete

Globals:

Description:

E_Discrete_Test

Discrete_test

Test E Gate

Prediction state vector (x;vx;ax;y;vy;ay)
Rotation angle (rad) of ellipse gate wrt radar cs
Semi axis length of gate along rotated x
Semi axis length of gate along rotated y

Discrete inclusion flag (1 => discrete in)

Ndiscrete X_D_Vec Y_D_Vec

Tests if any of a set of discrete points falls within an elliptical gate: (1) centered on the
predicted point, (2) oriented at an angle "ang_rotn" wrt radar coordination system, (3)
having semi axes lengths of semi_along along the rotated x axis and of length
semi_across along the rotated y axis.

The discrete locations were specified by the scenario generator and given here by the
arrays X_D_Vec and Y_D_Vec.

62

Module Name:

Calling Module:

Called Modules:

Inputs:
Corr
Dist
NAT_in
Nrep_in
scan

TR_Assoc_Max_T

Run_Tracker_8

cmp_track_age

Binary correlation matrix (trks, reps)
Distance matrix (trks, reps)
Number of active tracks in Table_T
Number of reports from current scan
Current scan

Outputs:
Update
unAssoc
unused
Asgn_Reps

Globals:

Binary array of updated tracks (1 => updated)
Binary array of unassociated tracks
Binary array of unused reports
Array of reports assigned to each track

Table T

Description:

Assigns unique reports to corresponding track. If a report is common to multiple tracks
then it is assigned to the oldest track.

63

Module Name:

Calling Module:

Called Modules:

Inputs:
Corr
Dist
NATJn
Nrep_in
scan

TR Assoc Min_D

Run_Tracker_8

cmp_track_age

Binary correlation matrix (trks, reps)
Distance matrix (trks, reps)
Number of active tracks in Table_T
Number of reports from current scan
Current scan

Outputs:
Update
unAssoc
unused
Asgn_Reps

Globals:

Description:

Binary array of updated tracks (1 => updated)
Binary array of unassociated tracks
Binary array of unused reports
Array of reports assigned to each track

Table_T

Assigns unique reports to corresponding track. If multiple reports are common to a given
track then the closest is assigned to the track.

64

Module Name: cmp_track_age

Calling Module: TR_Assoc_Max_T

Called Modules: None

Inputs:
trk Track index into Table T
scan Current scan

Outputs:
age Track age since first becai

Globals: Table T

Description:

Computes age of a track in scan units. Age is defined as time since track became firm.

65

Module Name:

Calling Module:

Called Modules:

Inputs:
Z_p
Z_s_last

Outputs:
ang_trk

Globals:

get_track_ang

Run_Tracker_8

None

Prediction state vector
Smoothed state vector (last update)

Angle of track (radians)

None

Description:

Computes track angle in radians with respect to the radar coordinate system.

66

Module Name:

Calling Module:

Called Modules:

Inputs:
Z_P

Outputs:
ang_pred

Globals:

get_pred_ang

Run_Tracker_8

None

Prediction state vector

Prediction of Angle

None

Description:

Computes angle of predicted point with respect to the radar coordinate system.

67

Module Name: update_error

Calling Module: Run_Tracker_8

Called Modules: None

Inputs:
N_Hits Number of times track captured a report
Z tru True state vector

Z_p Prediction state vector
TID Track ID number

Outputs:
mean_error Position error (predicted - true) average«
sigma_error Standard deviation of position error

Globals:
SUMl_ERROR
SUM2_ERROR

Description:

Computes running mean and standard deviation of position error between predicted and
true values as a function of track ID number. Stores running first and second moments in
global buffers SUMl_ERROR and SUM2_ERROR.

68

Module Name:

Calling Module:

Called Modules:

Inputs:
Ntk_max
scan
N_HITS
N EVENTS

Outputs:

Globals:

Description:

Load_P_DET

Run_Tracker_8

None

Number of tracks in P_DET buffer
Current scan index
Number of captures for track
Number of captures plus misses for track

None

Table T P DET

Computes fraction of captures for specific track over its evolution. Stores results in
global buffer P_DET.

69

Module Name:

Calling Module:

Called Modules:

Inputs:
Ntrk
dBuf_last_cnt

Outputs:
dBuf_cnt

Globals:

Description:

Load dBuf_4

Run Tracker_8

get_Table_Trk_4

Current number of tracks
Number of dropped HP tracks in buffer dBuf at last scan

Number of dropped HP tracks in buffer dBuf currently

dBuf
Table_T
DROPPED TENT FIRM
DPLP

Updates the high priority dropped track buffer each scan. The buffer dBuf has three
components: (time, x position, y position)

70

Module Name:

Calling Module:

Called Modules:

Inputs:

dBuf_new
plot_vec

Outputs:

Globals:

plot_dBuf

Run_Tracker_8

None

Counter in dropped track buffer
Min and max s and y values of plot space

None

dBuf

Description:

Plots dropped high priority tracks each scan.

»U.S. GOVERNMENT PRINTING OFFICE: 2001-610-055-10150

71

